Appendix B-6 - Syllabus - Centralized practice

Contents

Electronics Process Practice and Electronic Product Assembly and Debugging Practice
Analog Unit Circuit Simulation and Development Comprehensive Practical Training Internship
Digital Unit Circuit Simulation and Development Comprehensive Practical Training Internship
Microcontroller System Comprehensive Practical Training Internship1
Electronic System Engineering Practice Internship1
Embedded System Comprehensive Practical Training Internship1
Graduation Internship2
Graduation education

Competence field	Centralized practice
Curriculum designation	Electronics Process Practice and Electronic Product Assembly and
	Debugging Practice
Curriculum code	9061615010
Semester(s) in which	1 st Semester
the curriculum is taught	
Person responsible for	Lecturer Lin Lin
the curriculum	
Lecturer	Associate Professor Zhou Lai Xiu, Professor Hu Saichun, Professor
	Xiao Weichu, Professor Zhu Qiuxiang, Lecturer Xiong Jie, Lecturer Ye
	Yong.
Language	Chinese
The relationship	Electronics Process Practice and Electronic Product Assembly and
between the curriculum	Debugging Practice is an important component of the teaching
and the major	program for Electronic Information Engineering, playing a crucial role
	in achieving the professional talent cultivation objectives. Through
	process internships, students gain an understanding of the
	characteristics of modern electronic enterprises in terms of production,
	management, and operation, become familiar with the operational
	methods of Chinas electronics market, and further comprehend the
	significant importance of safety awareness and safe production in
	electronic product manufacturing; linking theory with practice, using
	the acquired theoretical knowledge to analyze the actual production
	techniques observed at the internship site, enriching, verifying,
	consolidating, and deepening theoretical knowledge, thereby enhancing
	the ability to solve practical engineering problems; the training of
	electronic product assembly and debugging skills is an indispensable
	step for students in the Electronic Information Engineering program to
	develop practical and hands-on abilities, serving as a critical phase for
	understanding various electronic components and integrating circuit
	theory with practical application, reinforcing the integration of
	theoretical knowledge with actual work.
Type of teaching,	Target students: students majoring in artificial intelligence and
contact hours	electronic information engineering
	Teaching method: concentrated practice
	Contact hours: 32 hours
	Class size: Four classes with about 160 students
Workload	Total workload = 60 hours;
	Contact hours = 32 hours;
	Self-study hours = 28 hours;
Credit points	2.0
Requirements according	After the end of the internship, each student completes an internship
to the examination	report independently. The internship report requires that theory be
regulations	combined with practice, there are views, arguments, clear organization,

	detailed information, powerful arguments, and correct conclusions.
Prerequisite curriculum	Circuit analysis, analog electronic technology, digital electronic
	technology
curriculum objectives	Learning outcomes:
/expected learning	The main task of this course is to train the skills of electronic product
outcomes	assembly and debugging. It is an essential step for students majoring in
	electronic information engineering to cultivate practical ability and
	hands-on ability. It is an important link to understand various electronic
	components and combine circuit theory with practice. It is a
	reinforcing process to combine theoretical knowledge with practical
	work. The specific objectives include:
	1. Able to communicate effectively and collaborate with team members
	and organize, coordinate, and direct the teams work as a leader. An
	engineering project is a system with established operational
	procedures. Before initiating an engineering project, it is essential to
	form an implementation team according to the project requirements
	and conduct detailed division of labor. Adopt a top-down approach to
	decompose the project into different modules level by level, assign
	specific responsibilities to each module, then collaborate and divide
	tasks to ultimately complete the project design efficiently.
	2. Able to conduct detailed discussions and arguments on specific
	professional issues involved in the implementation of engineering
	projects at group meetings, project briefings, etc., to obtain the optimal
	solution to problems. For questions raised by external personnel during
	project implementation, require the group to discuss and accurately
	express opinions through oral communication, written documents,
	charts, etc., respond to doubts, and understand the differences in
	communication with industry peers and the public.
	3. Be able to fully consider the application of engineering management
	and economic decision-making methods in the process of formulating
	solutions to complex electronic information engineering problems in a
	multi-disciplinary environment.4. Be able to fully consider the application of engineering management
	and economic decision-making methods in the process of formulating
	solutions to complex electronic information engineering problems in a
	multi-disciplinary environment.
Contents	Teaching (32 contact hours , 28 self-study hours)
	1. Through the internship of electronic component production process,
	master the characteristics and requirements of electronic component
	production. Understand the development status of electronic
	component companies.
	2. Learn about the production, testing and research and development of
	electronic components.
	3. Through the electronic component production company, I can have a
L	

	preliminary understanding of the general methods of modern electronic
	enterprise production management and combine the knowledge I have
	learned with production practice.
	4. After the end of the internship, each student shall independently
	complete an internship report, which requires linking theory with
	practice, having views, arguments, clear logic, detailed information,
	strong argumentation and correct conclusion.
	5. Take care to observe the working hours of the internship, do not be
	late, do not leave the internship position in advance, and do not leave
	the internship unit in advance without permission.
	6. Strictly abide by the labor production discipline of the internship
	unit; no smoking in the factory area is strictly prohibited; no touching
	of automatic control instruments in the production area is strictly
	prohibited; no playing around, listening to walkman, reading
	magazines and other behaviors unrelated to the internship and harmful
	to safety or having a bad impact on safety are strictly prohibited.
	7. Violators of the probationary discipline may be subject to criticism,
	inspection, supplementary probation or even suspension of probation.
	8. Each student will assemble and debug a digital power supply
	independently under the guidance of the instructor, and complete the
	internship report.
Study and examination	1. Work performance * 40%.
requirements and forms	2. Documented performance * 25%.
of examination	3. Response score * 35%.
Media employed	Multimedia computer, projector, Multisim software, digital circuit
	experiment box, soldering iron, signal generator, DC power supply,
	multimeter, oscilloscope and so on.
Reading list	1. Textbooks
	[1] Wu Jianhui. Electronic Information Engineering Practice [M]. Xi
	an: Xi an University of Electronic Science and Technology Press,
	2016.
	2010.

Competence field	Centralized practice
Curriculum designation	Analog Unit Circuit Simulation and Development Comprehensive
	Practical Training Internship
Curriculum code	9061615020
Semester(s) in which	3 th Semeste
the curriculum is taught	
Person responsible for	Professor Jiang Dongchu
the curriculum	
Lecturer	Professor Jiang Dongchu, Associate Professor Zhu Qiuxiang, Associate
	Professor Zhou Laixiu and Associate Professor He Fei
Language	Chinese
The relationship	"Comprehensive Practical Training and Internship in Analog Unit
between the curriculum	Circuit Simulation and Development" is one of the concentrated
and the major	practices for students majoring in Electronic Information Engineering,
	serving as a practical teaching component of the Analog Electronics
	course. It is a comprehensive training program designed for students to
	learn Analog Electronics courses. Through teacher guidance, students
	independently undertake a series of processes including designing,
	simulating, manufacturing, debugging, and writing design summaries
	or design specifications for a specific project. This program enables
	students to apply the theories and practices learned in Digital
	Electronics courses closely together, independently addressing
	practical issues in production and life, and creating small-scale analog
	electronic systems.
Type of teaching,	Target students: Electronic Information Engineering major
contact hours	Teaching method: concentrated practice
	Contact hours: 32 hours
	Class size: Four classes with about 160 students
Workload	Total workload = 50 hours;
	Contact hours = 32 hours;
	Self-study hours = 28 hours;
Credit points	2.0
Requirements according	Students who have completed their work with an attendance rate of
to the examination	more than two-thirds can take the test.
regulations	
Prerequisite curriculum	Advanced mathematics, university physics, circuit analysis
curriculum objectives	Learning outcomes:
/expected learning	The main task of this course is to enable students to apply the theories
outcomes	and practices learned in the analog electronic technology course
	closely together, independently solve practical problems in production
	and life, and create small analog electronic systems. The purpose is to
	cultivate students ability to connect theory with practice and design and
	manufacture by themselves, laying a good foundation for students to
	design more complex electronic circuits with programmable

	capabilities in the future. Specific objectives include:
	1. Be able to establish a preliminary model for the selected topic, and
	determine the framework structure and functional division of the model
	as well as reasonable scalability functions.
	2. Implement each functional module separately and then integrate
	them in the design process during which it is essential to consider
	achieving more functions reducing the number of component types
	used and the cost-effectiveness of these components; choose
	appropriate computer simulation software to simulate each functional
	module and refine and optimize based on the simulation results finally
	producing the circuit board for testing.
	3. Able to communicate effectively and collaborate with team
	members, and organize, coordinate, and direct the teams work as a
	leader. An engineering project is a system with established operational
	procedures. Before initiating an engineering project, it is essential to
	first form an implementation team according to the project
	requirements and conduct detailed division of labor. Adopt a top-down
	approach to decompose the project into different modules level by
	level, assign specific responsibilities to each module, and then
	collaborate to efficiently complete the project design.
	4. Be able to fully consider the application of engineering management
	and economic decision-making methods in the process of formulating
	solutions to complex electronic information engineering problems in a
	multi-disciplinary environment.
Contents	Teaching (32 contact hours, 28 self-study hours)
	1. Be proficient in using Multisim12 software methods to simulate
	circuits and master the method of analyzing simulation results;
	2. Familiar with various electronic components, can read out the
	parameters correctly, complete welding, learn to deal with various
	problems such as tin beads, less solder joints, insufficient solder
	problems such as tin beads, less solder joints, insufficient solder quantity, false welding;
	problems such as tin beads, less solder joints, insufficient solder quantity, false welding;3. Complete the welding of direct plug components; master the
	problems such as tin beads, less solder joints, insufficient solder quantity, false welding;3. Complete the welding of direct plug components; master the welding steps and methods of manual welding of direct plug resistors,
	problems such as tin beads, less solder joints, insufficient solder quantity, false welding;3. Complete the welding of direct plug components; master the welding steps and methods of manual welding of direct plug resistors, diodes, crystal oscillators, IC sockets, connectors, ceramic capacitors,
	 problems such as tin beads, less solder joints, insufficient solder quantity, false welding; 3. Complete the welding of direct plug components; master the welding steps and methods of manual welding of direct plug resistors, diodes, crystal oscillators, IC sockets, connectors, ceramic capacitors, bipolar junction transistors, push switches, digital displays,
	 problems such as tin beads, less solder joints, insufficient solder quantity, false welding; 3. Complete the welding of direct plug components; master the welding steps and methods of manual welding of direct plug resistors, diodes, crystal oscillators, IC sockets, connectors, ceramic capacitors, bipolar junction transistors, push switches, digital displays, light-emitting diodes, double row direct plugs, electrolytic capacitors,
	 problems such as tin beads, less solder joints, insufficient solder quantity, false welding; 3. Complete the welding of direct plug components; master the welding steps and methods of manual welding of direct plug resistors, diodes, crystal oscillators, IC sockets, connectors, ceramic capacitors, bipolar junction transistors, push switches, digital displays, light-emitting diodes, double row direct plugs, electrolytic capacitors, switches, and terminals;
	 problems such as tin beads, less solder joints, insufficient solder quantity, false welding; 3. Complete the welding of direct plug components; master the welding steps and methods of manual welding of direct plug resistors, diodes, crystal oscillators, IC sockets, connectors, ceramic capacitors, bipolar junction transistors, push switches, digital displays, light-emitting diodes, double row direct plugs, electrolytic capacitors, switches, and terminals; 4. Design and make unit circuits, debug and measure parameters and
	 problems such as tin beads, less solder joints, insufficient solder quantity, false welding; 3. Complete the welding of direct plug components; master the welding steps and methods of manual welding of direct plug resistors, diodes, crystal oscillators, IC sockets, connectors, ceramic capacitors, bipolar junction transistors, push switches, digital displays, light-emitting diodes, double row direct plugs, electrolytic capacitors, switches, and terminals; 4. Design and make unit circuits, debug and measure parameters and performance of unit circuits;
	 problems such as tin beads, less solder joints, insufficient solder quantity, false welding; 3. Complete the welding of direct plug components; master the welding steps and methods of manual welding of direct plug resistors, diodes, crystal oscillators, IC sockets, connectors, ceramic capacitors, bipolar junction transistors, push switches, digital displays, light-emitting diodes, double row direct plugs, electrolytic capacitors, switches, and terminals; 4. Design and make unit circuits, debug and measure parameters and performance of unit circuits; 5. Complete the practice report of "Simulation of Unit Circuit
	 problems such as tin beads, less solder joints, insufficient solder quantity, false welding; 3. Complete the welding of direct plug components; master the welding steps and methods of manual welding of direct plug resistors, diodes, crystal oscillators, IC sockets, connectors, ceramic capacitors, bipolar junction transistors, push switches, digital displays, light-emitting diodes, double row direct plugs, electrolytic capacitors, switches, and terminals; 4. Design and make unit circuits, debug and measure parameters and performance of unit circuits; 5. Complete the practice report of "Simulation of Unit Circuit Simulation and Development Comprehensive Practice".
Study and examination	 problems such as tin beads, less solder joints, insufficient solder quantity, false welding; 3. Complete the welding of direct plug components; master the welding steps and methods of manual welding of direct plug resistors, diodes, crystal oscillators, IC sockets, connectors, ceramic capacitors, bipolar junction transistors, push switches, digital displays, light-emitting diodes, double row direct plugs, electrolytic capacitors, switches, and terminals; 4. Design and make unit circuits, debug and measure parameters and performance of unit circuits; 5. Complete the practice report of "Simulation of Unit Circuit Simulation and Development Comprehensive Practice". 1. Works (50%).
Study and examination requirements and forms of examination	 problems such as tin beads, less solder joints, insufficient solder quantity, false welding; 3. Complete the welding of direct plug components; master the welding steps and methods of manual welding of direct plug resistors, diodes, crystal oscillators, IC sockets, connectors, ceramic capacitors, bipolar junction transistors, push switches, digital displays, light-emitting diodes, double row direct plugs, electrolytic capacitors, switches, and terminals; 4. Design and make unit circuits, debug and measure parameters and performance of unit circuits; 5. Complete the practice report of "Simulation of Unit Circuit Simulation and Development Comprehensive Practice".

Media employed	Multimedia computer, projector, Multisim software, analog circuit
	experiment box, soldering iron, signal generator, DC power supply,
	multimeter, oscilloscope and so on.
Reading list	1. Textbooks
	[1] Cheng Chunyu. Simulation Electronic Technology Experiment
	and Course Design[M]. Beijing: China Machine Press, 2016.
	[2] Guo Yongzhen. Simulation Electronic Technology Experiment
	and Course Design Guide[M]. Nanjing: Southeast University Press,
	2007.

Competence field	Centralized practice
Curriculum designation	Digital Unit Circuit Simulation and Development Comprehensive
	Practical Training Internship
Curriculum code	9061615030
Semester(s) in which	4 th Semester
the curriculum is taught	
Person responsible for	Associate Professor Zhou Lai Xiu
the curriculum	
Lecturer	Associate Professor Zhou Lai Xiu and Professor Tan Yue
Language	Chinese
The relationship	"Digital Unit Circuit Simulation and Development Comprehensive
between the curriculum	Practical Training Internship" is one of the concentrated practices for
and the major	the Electronic Information Engineering major, it is a practical teaching
	component of the Digital Electronics Technology course, serving as a
	comprehensive training for students to learn digital electronics
	technology courses. It involves a series of processes guided by
	instructors, enabling students to independently design, simulate,
	manufacture, debug, and write design summaries or design
	specifications for a specific project. This process helps students apply
	the theories and practices learned in digital electronics technology
	courses, enabling them to independently solve practical problems in
	production and life, and create small-scale electronic systems.
Type of teaching,	Target students: Electronic Information Engineering major
contact hours	Teaching method: concentrated practice
	Contact hours: 32 hours
	Class size: Four classes with about 160 students
Workload	Total workload = 60 hours;
	Contact hours = 32 hours;
	Self-study hours = 28 hours;
Credit points	2.0
Requirements according	Students who have completed their work with an attendance rate of
to the examination	more than two-thirds can take the test.
regulations	
Prerequisite curriculum	Advanced mathematics, circuit analysis, analog electronic technology,
	digital electronic technology
curriculum objectives	Learning outcomes:
/expected learning	The main task of this course is to enable students to apply the theories
outcomes	and practices learned in digital electronic technology courses closely
	together, independently solve practical problems in production and life,
	and create small-scale electronic systems. The purpose is to cultivate
	students ability to connect theory with practice and design and
	manufacture by themselves, laying a good foundation for designing
	more complex electronic circuits with programmable capabilities in the
	future. Specific objectives include:

	 Be able to establish a preliminary model for the selected topic, and determine the framework structure and functional division of the model as well as reasonable scalability functions. Implement each functional module separately and then integrate them in the design process, it is essential to consider achieving more functions, reducing the number of component types used, and the cost-effectiveness of the components; choose appropriate computer simulation software to simulate each functional module and refine and optimize based on the simulation results, finally fabricate the circuit board for testing. Able to communicate effectively and collaborate with team members, and organize, coordinate, and direct the teams work as a leader. An engineering project is a system with established operational procedures. Before initiating an engineering project, it is essential to first form an implementation team according to project requirements and conduct detailed division of labor. Adopt a top-down approach to decompose the project into different modules level by level, assign specific responsibilities to each module, then collaborate and divide tasks, ultimately completing the project design efficiently. Be able to fully consider the application of engineering management and economic decision-making methods in the process of formulating solutions to complex electronic information engineering problems in a multi-disciplinary environment.
Contents	Teaching (32 contact hours, 28 self-study hours)
	1. Familiar with various electronic components, can read out their
	parameters correctly;
	2. Complete welding, will deal with various problems such as tin
	beads, less solder joints, insufficient solder quantity, false welding;
	3. Complete the welding of direct plug components; master the
	welding steps and methods of manual welding of direct plug resistor,
	diode, crystal oscillator, IC socket, connector, ceramic capacitor, bipolar junction transistor, push switch, digital tube, light-emitting
	diode, double row direct plug, electrolytic capacitor, switch and
	terminal block;
	4. Design and make unit circuits, debug and measure parameters and
	performance of unit circuits.
	5. Complete the internship report of "Digital Unit Circuit Simulation
	and Development Comprehensive Practice".
Study and examination	1. Works (50%).
requirements and forms	2. Response score (25%).
of examination	3. Internship report (25%).
Media employed	Multimedia computer, projector, Multisim software, digital circuit
	experiment box, soldering iron, signal generator, DC power supply,

Reading list	1. Textbooks
	[1] You Jia. Digital Electronic Technology Experiment and Course
	Design (2nd Edition)[M]. Beijing: China Machine Press, 2017.
	[2] Xu Xiaojun. Digital Electronic Technology Experiment and Course
	Design Guide (2nd Edition)[M]. Nanjing: Southeast University Press,
	2014.

Competence field	Centralized practice
Curriculum designation	Microcontroller System Comprehensive Practical Training Internship
Curriculum code	9061415010
Semester(s) in which	4 th Semester
the curriculum is taught	
Person responsible for	Professor Li Wenguo
the curriculum	
Lecturer	Professor Li Wenguo, Professor Xiao Weichu, Professor Tan Yue and
	assistant professor Liu Xiongjie
Language	Chinese
The relationship	This course design is a comprehensive and design-oriented experiment
between the curriculum	for the course "Principles and Applications of Microcontrollers," which
and the major	can serve as a supplement and enhancement to classroom teaching and
5	regular in-class experiments. Through the study of the course
	"Principles and Applications of Microcontrollers," students have
	initially mastered the basic principles of the 51 microcontroller, as well
	as fundamental principles and applications of parallel ports, serial
	ports, interrupts, and timing. However, in-class experiments mainly
	rely on the experimental guidebook, which limits the full utilization of
	students autonomous design and hands-on skills. By designing
	experiments for the course "Principles and Applications of
	Microcontrollers," students can enhance their autonomous learning,
	consolidate their learning outcomes, improve their practical abilities
	and creative thinking in applying microcontroller technology
	comprehensively, lay a solid foundation for subsequent specialized
	courses, and cultivate their comprehensive application capabilities of
	professional knowledge, aligning with employment demands.
Type of teaching,	Target students: Electronic Information Engineering major
contact hours	Teaching method: theoretical teaching + practical teaching
	Contact hours: 32 hours
	Including:
	Theoretical teaching: 16 hours
	Practical teaching: 16 hours
	Class size: Four classes with about 160 students
Workload	Total workload = 90 hours;
	Contact hours = 32 hours;
	Self-study hours = 58 hours;
Credit points	3.0
Requirements according	Only students who are present 90% of the time and complete 90% of
to the examination	their homework can take the exam.
regulations	
Prerequisite curriculum	Advanced mathematics, circuit analysis, analog electronic technology,
	digital electronic technology, C language programming, data structure,

	microcontroller principle and application.
curriculum objectives	Learning outcomes:
/expected learning outcomes	The main task of this course is to make students deeply understand the principle and application of microcontroller, master the interface technology of microcontroller system and external components interaction, and design a small example. The specific objectives include. The specific objectives include: Knowledge: 1. can use various components to design and make AT89S52
	microcomputer peripheral circuits, write peripheral drivers, and master the testing methods of various technical parameters of electronic products.
	 Through explaining the comprehensive problems of given intelligent vehicles, master the interface technology of external interaction, such as ADC, DAC, PWM, DMA, etc., and be able to apply these technologies for data acquisition and processing. Design and implement a comprehensive example project based on
	microcontroller through a small team of 1-3 people. Skill:
	1. Learn to use the microcontroller development environment and tools, such as Keil, for program writing, compilation, burning and debugging;
	2. Can design and implement intelligent vehicles based on microcontroller, such as motor rotation, the use of different sensor modules and button input processing;
	3. Master the application of microcontroller in embedded system, and be able to complete hardware interface design and software programming for self-selected topics.
	Ability: 1. To cultivate students ability to comprehensively use professional knowledge to solve practical problems, improve students comprehensive quality, enhance students engineering practice ability and employment competitiveness;
	2. This course design gives a comprehensive problem of intelligent can to cultivate students ability to think independently, solve problems and design products;
	3. Through the study and application of these knowledge, students are trained to develop a scientific work attitude and good working habits and learn to think deeply when they succeed in the process of engineering design, and remain calm when they are frustrated.
Contents	Theoretical teaching (16 contact hours, 18 self-study hours)1. Pilot stage: (4 contact hours, 4 self-study hours)(1) Project requirement analysis;
	(2) Project effect demonstration;

	(3) Technical analysis is needed;
	(4) Development environment and development board usage.
	2. Stage I: (4 contact hours, 6 self-study hours)
	(1) Develop the use of this schematic;
	(2) I/O interface principle;
	(3) LED principle;
	(4) Key principle;
	3. Stage II: (8 contact hours, 8 self-study hours)
	(1) Principle of external interruption;
	(2) Timer principle;
	(3) Serial communication experiment;
	Practical teaching (16 contact hours, 40 self-study hours)
	(1) Implementation stage of intelligent vehicle comprehensive project;
	(5 contact hours, 15 self-study hours)
	(2) Implementation of extended functions and innovative ideas; (3
	contact hours, 5 self-study hours)
	(3) Teams of 1-3 people are formed to select a practical project and use
	the microcontroller minimal system board as the main control chip to
	realize the function of the practical project; (5 contact hours, 15
	self-study hours)
	(4) Listen to professional lectures, physical demonstrations, defense
	and acceptance, and write course design reports. (3 contact hours, 5
	self-study hours)
Study and examination	The final results include:
requirements and forms	1. Basic requirements for class (20%): no late, early withdrawal,
of examination	absence without reason;
	2. Physical demonstration and defense acceptance (30%): the physical
	objects designed in the course are demonstrated and defended;
	3. Writing of practice report (50%): content of practice and experience
	and summary of practice training.
Media employed	Keil and Proteus software, microcontroller experiment box,
	multimedia, laser pointer, blackboard etc.
Reading list	Teaching material:
	[1]Yang Huaixian, Huang Huixian et al. Principles and Applications of
	Microcontroller[M], Xiangtan University Press, 2013.
	Reference book:
	[1]Guo Tianxiang, New Concept 51 Microcontroller C Language
	Tutorial (2nd Edition)[M]. Electronic Industry Press, 2018.
	[2]Xie Weicheng, Yang Jiaguo et al. Principles and Applications of
	Microcontroller and C51 Programming. Beijing: Tsinghua University
	Press, 2019.
	[3]Ma Zhongmei et al. C Language Application Design of
	Microcontroller. Beijing University of Aeronautics and Astronautics
L	

Press, 2021.
Other information:
PPT of comprehensive course design theory teaching of "Principle and
Application of Microcontroller"

Curriculum designation Electronic System Engineering Practice Internship Curriculum code 9061615040 Semester(s) in which the curriculum is taught 5 th Semester Person responsible for the curriculum Professor Li Wenguo Lacturer Professor Li Wenguo, Associate Professor Hu Saichun, Lecturer Xiong Jie and Lecturer Zhang Lincheng Language Chinese The relationship between the curriculum and the major which can serve as a supplement and enhancement to classroom teaching and regular in-class experiments. Through the study of "Electronic System Design" course students have initially mastered the basic principles of STM32 microcontrollers as well as the principles of GPIO buttons serial communication external interrupts and timing. However in-class experiments mainly rely on experimental manuals making it difficult to fully leverage students autonomous design and hands-on abilities. Through comprehensive practical training internships in electronic system design students can enhance their autonomous learning consolidate their learning outcomes improve their practical skills and creative thinking in applying STM32 microcontroller technology lay a solid foundation for subsequent specialized course studies and cultivate their comprehensive application capabilities of professional knowledge aligning with employment demands. Type of teaching, contact hours Target students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours: 32 hours; Including: Theoretical teaching: 16 hours Practical teaching: 16 hours	Competence field	Centralized practice
Curriculum code 9061615040 Semester(s) in which the curriculum is taught 5th Semester Person responsible for the curriculum Professor Li Wenguo, Associate Professor Hu Saichun, Lecturer Xiong Jie and Lecturer Zhang Lincheng Language Chinese The relationship This practical training internship is a comprehensive and design-oriented experiment for the course "Electronic System Design" which can serve as a supplement and enhancement to classroom teaching and regular in-class experiments. Through the study of "Electronic System Design" course students have initially mastered the basic principles of STM32 microcontrollers as well as the principles of GPIO buttons serial communication external interrupts and timing. However in-class experiments mainly rely on experimental manuals making it difficult to fully leverage students autonomous design and hands-on abilities. Through comprehensive practical training internships in electronic system design students can enhance their autonomous learning consolidate their learning outcomes improve their practical skills and creative thinking in applying STM32 microcontroller technology lay a solid foundation for subsequent specialized course studies and cultivate their comprehensive application capabilities of professional knowledge aligning with employment demands. Type of teaching, contact hours Target students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours: 32 hours; Including: Theoretical teaching: 16 hours Practical teaching: 16 hours Workload Total workload = 90 hours; Contact hours = 32 hours;	•	*
Semester(s) in which the curriculum is taught 5 th Semester Person responsible for the curriculum Professor Li Wenguo Lecturer Professor Li Wenguo, Associate Professor Hu Saichun, Lecturer Xiong Jie and Lecturer Zhang Lincheng Language Chinese The relationship between the curriculum and the major This practical training internship is a comprehensive and design-oriented experiment for the course "Electronic System Design" which can serve as a supplement and enhancement to classroom teaching and regular in-class experiments. Through the study of "Electronic System Design" course students have initially mastered the basic principles of STM32 microcontrollers as well as the principles of GPIO buttons serial communication external interrupts and timing. However in-class experiments mainly rely on experimental manuals making it difficult to fully leverage students autonomous design and hands-on abilities. Through comprehensive practical training internships in electronic system design students can enhance their autonomous learning consolidate their learning outcomes improve their practical skills and creative thinking in applying STM32 microcontroller technology lay a solid foundation for subsequent specialized course studies and cultivate their comprehensive application capabilities of professional knowledge aligning with employment demands. Type of teaching, contact hours Target students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours: 32 hours Class size: Four classes with about 160 students Workload Total workload = 90 hours; Contact hours = 32 hours;	-	
the curriculum is taught Professor Li Wenguo Person responsible for the curriculum Professor Li Wenguo, Associate Professor Hu Saichun, Lecturer Xiong Jie and Lecturer Zhang Lincheng Language Chinese The relationship between the curriculum and the major This practical training internship is a comprehensive and design-oriented experiment for the course "Electronic System Design" which can serve as a supplement and enhancement to classroom teaching and regular in-class experiments. Through the study of "Electronic System Design" course students have initially mastered the basic principles of STM32 microcontrollers as well as the principles of GPIO buttons serial communication external interrupts and timing. However in-class experiments mainly rely on experimental manuals making it difficult to fully leverage students autonomous design and hands-on abilities. Through comprehensive practical training internships in electronic system design students can enhance their autonomous learning consolidate their learning outcomes improve their practical skills and creative thinking in applying STM32 microcontroller technology lay a solid foundation for subsequent specialized course studies and cultivate their comprehensive application capabilities of professional knowledge aligning with employment demands. Type of teaching, contact hours: 32 hours: Theoretical teaching: 16 hours Practical teaching: 16 hours Practical teaching: 16 hours Contact hours: 32 hours; Contact hours = 32 hours;		
Person responsible for the curriculum Professor Li Wenguo Lecturer Professor Li Wenguo, Associate Professor Hu Saichun, Lecturer Xiong Jie and Lecturer Zhang Lincheng Language Chinese The relationship between the curriculum and the major This practical training internship is a comprehensive and design-oriented experiment for the course "Electronic System Design" which can serve as a supplement and enhancement to classroom teaching and regular in-class experiments. Through the study of "Electronic System Design" course students have initially mastered the basic principles of STM32 microcontrollers as well as the principles of GPIO buttons serial communication external interrupts and timing. However in-class experiments mainly rely on experimental manuals making it difficult to fully leverage students autonomous design and hands-on abilities. Through comprehensive practical training internships in electronic system design students can enhance their autonomous learning consolidate their learning outcomes improve their practical skills and creative thinking in applying STM32 microcontroller technology lay a solid foundation for subsequent specialized course studies and cultivate their comprehensive application capabilities of professional knowledge aligning with employment demands. Type of teaching, contact hours: 32 hours Including: Theoretical teaching: 16 hours Practical teaching: 16 hours Practical teaching: 16 hours Class size: Four classes with about 160 students Workload Total workload = 90 hours; Contact hours = 32 hours;		
the curriculumProfessor Li Wenguo, Associate Professor Hu Saichun, Lecturer Xiong Jie and Lecturer Zhang LinchengLanguageChineseThe relationship between the curriculum and the majorThis practical training internship is a comprehensive and design-oriented experiment for the course "Electronic System Design" which can serve as a supplement and enhancement to classroom teaching and regular in-class experiments. Through the study of "Electronic System Design" course students have initially mastered the basic principles of STM32 microcontrollers as well as the principles of GPIO buttons serial communication external interrupts and timing, However in-class experiments mainly rely on experimental manuals making it difficult to fully leverage students autonomous design and hands-on abilities. Through comprehensive practical training internships in electronic system design students can enhance their autonomous learning consolidate their learning outcomes improve their practical skills and creative thinking in applying STM32 microcontroller technology lay a solid foundation for subsequent specialized course studies and cultivate their comprehensive application capabilities of professional knowledge aligning with employment demands.Type of teaching, contact hoursTarget students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours 32 hours Class size: Four classes with about 160 studentsWorkloadTotal workload = 90 hours; Contact hours = 32 hours;	-	Professor Li Wenguo
LecturerProfessor Li Wenguo, Associate Professor Hu Saichun, Lecturer Xiong Jie and Lecturer Zhang LinchengLanguageChineseTherelationshipThis practical training internship is a comprehensive and design-oriented experiment for the course "Electronic System Design" which can serve as a supplement and enhancement to classroom teaching and regular in-class experiments. Through the study of "Electronic System Design" course students have initially mastered the basic principles of STM32 microcontrollers as well as the principles of GPIO buttons serial communication external interrupts and timing. However in-class experiments mainly rely on experimental manuals making it difficult to fully leverage students autonomous design and hands-on abilities. Through comprehensive practical training internships in electronic system design students can enhance their autonomous learning consolidate their learning outcomes improve their practical skills and creative thinking in applying STM32 microcontroller technology lay a solid foundation for subsequent specialized course studies and cultivate their comprehensive application capabilities of professional knowledge aligning with employment demands.Type of teaching, contact hoursTarget students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours: 32 hours Including: Theoretical teaching: 16 hours Practical teaching: 16 hours Class size: Four classes with about 160 studentsWorkloadTotal workload = 90 hours; Contact hours = 32 hours;	-	Totossor Er Wenguo
Jie and Lecturer Zhang LinchengLanguageChineseTherelationshipThis practical training internship is a comprehensive and design-oriented experiment for the course "Electronic System Design" which can serve as a supplement and enhancement to classroom teaching and regular in-class experiments. Through the study of "Electronic System Design" course students have initially mastered the basic principles of STM32 microcontrollers as well as the principles of GPIO buttons serial communication external interrupts and timing. However in-class experiments mainly rely on experimental manuals making it difficult to fully leverage students autonomous design and hands-on abilities. Through comprehensive practical training internships in electronic system design students can enhance their autonomous learning consolidate their learning outcomes improve their practical skills and creative thinking in applying STM32 microcontroller technology lay a solid foundation for subsequent specialized course studies and cultivate their comprehensive application capabilities of professional knowledge aligning with employment demands.Type of teaching, contact hoursTarget students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours: 32 hours Including: Theoretical teaching: 16 hours Practical teaching: 16 hours Class size: Four classes with about 160 studentsWorkloadTotal workload = 90 hours; Contact hours = 32 hours;		Professor Li Wenguo, Associate Professor Hu Saichun, Lecturer Xiong
LanguageChineseTherelationshipThis practical training internship is a comprehensive and design-oriented experiment for the course "Electronic System Design" which can serve as a supplement and enhancement to classroom teaching and regular in-class experiments. Through the study of "Electronic System Design" course students have initially mastered the basic principles of STM32 microcontrollers as well as the principles of GPIO buttons serial communication external interrupts and timing. However in-class experiments mainly rely on experimental manuals making it difficult to fully leverage students autonomous design and hands-on abilities. Through comprehensive practical training internships in electronic system design students can enhance their autonomous learning consolidate their learning outcomes improve their practical skills and creative thinking in applying STM32 microcontroller technology lay a solid foundation for subsequent specialized course studies and cultivate their comprehensive application capabilities of professional knowledge aligning with employment demands.Type of teaching, contact hoursTarget students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours: 32 hours Including: Theoretical teaching: 16 hours Practical teaching: 16 hours Class size: Four classes with about 160 studentsWorkloadTotal workload = 90 hours; Contact hours; Contact hours = 32 hours;	Lootaror	-
The relationship between the curriculum and the majorThis practical teaching and the majorThis practical teaching and the majorThis 	Language	
between the curriculum and the majordesign-oriented experiment for the course "Electronic System Design" which can serve as a supplement and enhancement to classroom teaching and regular in-class experiments. Through the study of "Electronic System Design" course students have initially mastered the basic principles of STM32 microcontrollers as well as the principles of GPIO buttons serial communication external interrupts and timing. However in-class experiments mainly rely on experimental manuals making it difficult to fully leverage students autonomous design and hands-on abilities. Through comprehensive practical training internships in electronic system design students can enhance their practical skills and creative thinking in applying STM32 microcontroller technology lay a solid foundation for subsequent specialized course studies and cultivate their comprehensive application capabilities of professional knowledge aligning with employment demands.Type of contact hoursTarget students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours: 32 hours Including: Theoretical teaching: 16 hours Practical teaching: 16 hours Practical teaching: 16 hoursWorkloadTotal workload = 90 hours; Contact hours = 32 hours;		
and the majorwhich can serve as a supplement and enhancement to classroom teaching and regular in-class experiments. Through the study of "Electronic System Design" course students have initially mastered the basic principles of STM32 microcontrollers as well as the principles of GPIO buttons serial communication external interrupts and timing. However in-class experiments mainly rely on experimental manuals making it difficult to fully leverage students autonomous design and hands-on abilities. Through comprehensive practical training internships in electronic system design students can enhance their autonomous learning consolidate their learning outcomes improve their practical skills and creative thinking in applying STM32 microcontroller technology lay a solid foundation for subsequent specialized course studies and cultivate their comprehensive application capabilities of professional knowledge aligning with employment demands.Type of teaching, contact hoursTarget students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours: 32 hours Including: Theoretical teaching: 16 hours Practical teaching: 16 hoursWorkloadTotal workload = 90 hours; Contact hours = 32 hours;	-	
Verticalteaching and regular in-class experiments. Through the study of "Electronic System Design" course students have initially mastered the basic principles of STM32 microcontrollers as well as the principles of GPIO buttons serial communication external interrupts and timing. However in-class experiments mainly rely on experimental manuals making it difficult to fully leverage students autonomous design and hands-on abilities. Through comprehensive practical training internships in electronic system design students can enhance their autonomous learning consolidate their learning outcomes improve their practical skills and creative thinking in applying STM32 microcontroller technology lay a solid foundation for subsequent specialized course studies and cultivate their comprehensive application capabilities of professional knowledge aligning with employment demands.Type of teaching, contact hoursTarget students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours: 32 hours Including: Theoretical teaching: 16 hours Practical teaching: 16 hoursWorkloadTotal workload = 90 hours; Contact hours = 32 hours;		
"Electronic System Design" course students have initially mastered the basic principles of STM32 microcontrollers as well as the principles of GPIO buttons serial communication external interrupts and timing. However in-class experiments mainly rely on experimental manuals making it difficult to fully leverage students autonomous design and hands-on abilities. Through comprehensive practical training internships in electronic system design students can enhance their autonomous learning consolidate their learning outcomes improve their practical skills and creative thinking in applying STM32 microcontroller technology lay a solid foundation for subsequent specialized course studies and cultivate their comprehensive application capabilities of professional knowledge aligning with employment demands.Type of contact hoursTarget students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours: 32 hours Including: Theoretical teaching: 16 hoursWorkloadTotal workload = 90 hours; Contact hours = 32 hours;	and the major	
basic principles of STM32 microcontrollers as well as the principles of GPIO buttons serial communication external interrupts and timing. However in-class experiments mainly rely on experimental manuals making it difficult to fully leverage students autonomous design and hands-on abilities. Through comprehensive practical training internships in electronic system design students can enhance their autonomous learning consolidate their learning outcomes improve their practical skills and creative thinking in applying STM32 microcontroller technology lay a solid foundation for subsequent specialized course studies and cultivate their comprehensive application capabilities of professional knowledge aligning with employment demands.Type of teaching, contact hoursTarget students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours: 32 hours Including: Theoretical teaching: 16 hours Practical teaching: 16 hours Class size: Four classes with about 160 studentsWorkloadTotal workload = 90 hours; Contact hours = 32 hours;		
GPIO buttons serial communication external interrupts and timing. However in-class experiments mainly rely on experimental manuals making it difficult to fully leverage students autonomous design and hands-on abilities. Through comprehensive practical training internships in electronic system design students can enhance their autonomous learning consolidate their learning outcomes improve their practical skills and creative thinking in applying STM32 microcontroller technology lay a solid foundation for subsequent specialized course studies and cultivate their comprehensive application capabilities of professional knowledge aligning with employment demands.Type of teaching, contact hoursTarget students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours: 32 hours Including: Theoretical teaching: 16 hours Practical teaching: 16 hours Class size: Four classes with about 160 studentsWorkloadTotal workload = 90 hours; Contact hours = 32 hours;		
However in-class experiments mainly rely on experimental manuals making it difficult to fully leverage students autonomous design and hands-on abilities. Through comprehensive practical training internships in electronic system design students can enhance their autonomous learning consolidate their learning outcomes improve their practical skills and creative thinking in applying STM32 microcontroller technology lay a solid foundation for subsequent specialized course studies and cultivate their comprehensive application capabilities of professional knowledge aligning with employment demands.Type of teaching, contact hoursTarget students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours: 32 hours Including: Theoretical teaching: 16 hours Practical teaching: 16 hours Practical teaching: 16 hoursWorkloadTotal workload = 90 hours; Contact hours = 32 hours;		
making it difficult to fully leverage students autonomous design and hands-on abilities. Through comprehensive practical training internships in electronic system design students can enhance their autonomous learning consolidate their learning outcomes improve their practical skills and creative thinking in applying STM32 microcontroller technology lay a solid foundation for subsequent specialized course studies and cultivate their comprehensive application capabilities of professional knowledge aligning with employment demands.Type of teaching, contact hoursTarget students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours: 32 hours Including: Theoretical teaching: 16 hours Practical teaching: 16 hours Class size: Four classes with about 160 studentsWorkloadTotal workload = 90 hours; Contact hours = 32 hours;		
hands-on abilities. Through comprehensive practical training internships in electronic system design students can enhance their autonomous learning consolidate their learning outcomes improve their practical skills and creative thinking in applying STM32 microcontroller technology lay a solid foundation for subsequent specialized course studies and cultivate their comprehensive application capabilities of professional knowledge aligning with employment demands.Type of teaching, contact hoursTarget students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours: 32 hours Including: Theoretical teaching: 16 hours Practical teaching: 16 hours Class size: Four classes with about 160 studentsWorkloadTotal workload = 90 hours; Contact hours = 32 hours;		
internships in electronic system design students can enhance their autonomous learning consolidate their learning outcomes improve their practical skills and creative thinking in applying STM32 microcontroller technology lay a solid foundation for subsequent specialized course studies and cultivate their comprehensive application capabilities of professional knowledge aligning with employment demands.Type of teaching, contact hoursTarget students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours: 32 hours Including: Theoretical teaching: 16 hours Practical teaching: 16 hours Class size: Four classes with about 160 studentsWorkloadTotal workload = 90 hours; Contact hours = 32 hours;		
Autonomous learning consolidate their learning outcomes improve their practical skills and creative thinking in applying STM32 microcontroller technology lay a solid foundation for subsequent specialized course studies and cultivate their comprehensive application capabilities of professional knowledge aligning with employment demands.Type of teaching, contact hoursTarget students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours: 32 hours Including: Theoretical teaching: 16 hours Practical teaching: 16 hoursWorkloadTotal workload = 90 hours; Contact hours = 32 hours;		
practical skills and creative thinking in applying STM32 microcontroller technology lay a solid foundation for subsequent specialized course studies and cultivate their comprehensive application capabilities of professional knowledge aligning with employment demands.Type of teaching, contact hoursTarget students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours: 32 hours Including: Theoretical teaching: 16 hours Practical teaching: 16 hours Class size: Four classes with about 160 studentsWorkloadTotal workload = 90 hours; Contact hours = 32 hours;		
Image: Proceeding of teaching of teach		
specialized course studies and cultivate their comprehensive application capabilities of professional knowledge aligning with employment demands.Type of teaching, contact hoursTarget students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours: 32 hours Including: Theoretical teaching: 16 hours Practical teaching: 16 hours Class size: Four classes with about 160 studentsWorkloadTotal workload = 90 hours; Contact hours = 32 hours;		
Application capabilities of professional knowledge aligning with employment demands.Type of teaching, contact hoursTarget students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours: 32 hours Including: Theoretical teaching: 16 hours Practical teaching: 16 hours Class size: Four classes with about 160 studentsWorkloadTotal workload = 90 hours; Contact hours = 32 hours;		
Imployment demands.Type of teaching, contact hoursTarget students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours: 32 hours Including: Theoretical teaching: 16 hours Practical teaching: 16 hours Class size: Four classes with about 160 studentsWorkloadTotal workload = 90 hours; Contact hours = 32 hours;		-
Type of teaching, contact hoursTarget students: Electronic Information Engineering major Teaching method: theoretical teaching + practical teaching Contact hours: 32 hours Including: Theoretical teaching: 16 hours Practical teaching: 16 hours Class size: Four classes with about 160 studentsWorkloadTotal workload = 90 hours; Contact hours = 32 hours;		
contact hoursTeaching method: theoretical teaching + practical teachingContact hours: 32 hoursIncluding:Theoretical teaching: 16 hoursPractical teaching: 16 hoursClass size: Four classes with about 160 studentsWorkloadTotal workload = 90 hours;Contact hours = 32 hours;	Type of teaching,	
Contact hours: 32 hoursIncluding:Theoretical teaching: 16 hoursPractical teaching: 16 hoursClass size: Four classes with about 160 studentsWorkloadTotal workload = 90 hours;Contact hours = 32 hours;	contact hours	
Theoretical teaching: 16 hoursPractical teaching: 16 hoursClass size: Four classes with about 160 studentsWorkloadTotal workload = 90 hours;Contact hours = 32 hours;		
Practical teaching: 16 hours Class size: Four classes with about 160 students Workload Total workload = 90 hours; Contact hours = 32 hours;		Including:
Class size: Four classes with about 160 students Workload Total workload = 90 hours; Contact hours = 32 hours;		Theoretical teaching: 16 hours
Workload Total workload = 90 hours; Contact hours = 32 hours;		
Contact hours = 32 hours;		Class size: Four classes with about 160 students
Contact hours = 32 hours;	Workload	Total workload = 90 hours:
501-5000 y $10015 - 50$ 10015		Self-study hours = 58 hours;
Credit points 3.0	Credit points	
Requirements according Only students who are present 90% of the time and complete 90% of	_	Only students who are present 90% of the time and complete 90% of
to the examination their homework can take the exam.		
regulations		
Prerequisite curriculum Advanced mathematics, circuit analysis, analog electronic technology,	-	Advanced mathematics, circuit analysis, analog electronic technology,
digital electronic technology, C language programming, data structure,	*	

curriculum objectives Learning outcomes: /expected learning outcomes The main task of this module is to make students deeply understand the principle and application of STM32 microcontroller, master the interface technology of STM32 microcontroller system and externa components interaction, and design a small example. The specific objectives include: Knowledge: 1. Can use various components to design and make STM32 microcontroller peripheral circuits, write peripheral drivers, and master the testing methods of various technical parameters of electronic products. 2. Through the comprehensive project of multi-functional mobile wireless data acquisition instrument based on STM32, students car master the interface technology of external interaction, such as ADC DAC, PWM, etc., and be able to apply these technologies for data acquisition and processing. 3. Design and implement a comprehensive example project based or STM32 microcontroller in the form of a small team of 1-3 people. Skill: 1. Learn to use the microcontroller development environment and tools, such as Keil, to write, compile, burn and debug programs; 2. Can design and implement multi-functional mobile wireless data acquisition instrument based on STM32, such as data acquisition use of different sensor modules and button input processing;		microcontroller principle and application, electronic system design, etc.
 /expected learning The main task of this module is to make students deeply understand the principle and application of STM32 microcontroller, master the interface technology of STM32 microcontroller system and externa components interaction, and design a small example. The specific objectives include: Knowledge: Can use various components to design and make STM32 microcontroller pripheral circuits, write peripheral drivers, and master the testing methods of various technical parameters of electronic products. Through the comprehensive project of multi-functional mobile wireless data acquisition instrument based on STM32, students car master the interface technology of external interaction, such as ADC DAC, PWM, etc., and be able to apply these technologies for data acquisition and processing. Design and implement a comprehensive example project based or STM32 microcontroller in the form of a small team of 1-3 people. Skill: Learn to use the microcontroller development environment and tools, such as Keil, to write, compile, burn and debug programs; Can design and implement multi-functional mobile wireless data acquisition instrument based on STM32, such as data acquisition, use of different sensor modules and button input processing; Master the application of microcontroller in embedded system, and be able to complete hardware interface design and software programming of self-selected topics. Ability: To cultivate students ability to comprehensively apply professiona knowledge to solve practical problems, improve students comprehensive quality, enhance students engineering practice ability and employment competitiveness; Through the comprehensive practical training project of multi-functional mobile wireless data acquisition instrument based on STM32, students are trained to think independently, solve problems and design products; 	aurriaulum abiaatiyaa	
 Ability: 1. To cultivate students ability to comprehensively apply professional knowledge to solve practical problems, improve students comprehensive quality, enhance students engineering practice ability and employment competitiveness; 2. Through the comprehensive practical training project of multi-functional mobile wireless data acquisition instrument based or STM32, students are trained to think independently, solve problems and design products; 3. Through the study and application of these knowledge, students are trained to develop a scientific work attitude and good working habits understand the values of life in the process of engineering design, learn to think deeply when they succeed, and remain calm when they are frustrated. 	/expected learning	 Learning outcomes: The main task of this module is to make students deeply understand the principle and application of STM32 microcontroller, master the interface technology of STM32 microcontroller system and external components interaction, and design a small example. The specific objectives include: Knowledge: 1. Can use various components to design and make STM32 microcontroller peripheral circuits, write peripheral drivers, and master the testing methods of various technical parameters of electronic products. 2. Through the comprehensive project of multi-functional mobile wireless data acquisition instrument based on STM32, students can master the interface technology of external interaction, such as ADC, DAC, PWM, etc., and be able to apply these technologies for data acquisition and processing. 3. Design and implement a comprehensive example project based on STM32 microcontroller in the form of a small team of 1-3 people. Skill: 1. Learn to use the microcontroller development environment and tools, such as Keil, to write, compile, burn and debug programs; 2. Can design and implement multi-functional mobile wireless data acquisition instrument based on STM32, such as data acquisition, use of different sensor modules and button input processing; 3. Master the application of microcontroller in embedded system, and be able to complete hardware interface design and software
Contents Theoretical teaching (16 contact hours, 18 self-study hours)		 To cultivate students ability to comprehensively apply professional knowledge to solve practical problems, improve students comprehensive quality, enhance students engineering practice ability and employment competitiveness; Through the comprehensive practical training project or multi-functional mobile wireless data acquisition instrument based or STM32, students are trained to think independently, solve problems and design products; Through the study and application of these knowledge, students are trained to develop a scientific work attitude and good working habits understand the values of life in the process of engineering design, learn to think deeply when they succeed, and remain calm when they are set.
1. Pilot stage: (4 contact hours, 4 self-study hours)	Contents	

	(1) Project requirement analysis;
	(2) Project effect demonstration;
	(3) Technical analysis is needed;
	(4) Development environment and development board usage.
	2. Stage I: (4 contact hours, 6 self-study hours)
	(1) Develop the use of this schematic diagram;
	(2) GPIO interface principle;
	(3) Key principle;
	(4) The principle of sensor use required by the project;
	3. Stage II: (8 contact hours, 8 self-study hours)
	(1) External interrupt principle;
	(2) Timer principle;
	(3) Principle of serial communication;
	Practical teaching (16 contact hours, 40 self-study hours)
	(1) Multi-functional mobile wireless data acquisition instrument
	comprehensive project implementation stage; (5 contact hours, 15
	self-study hours)
	(2) Implementation of extended functions and innovative ideas; (3)
	contact hours, 5 self-study hours)
	(3) 1-3 people form a team, choose a practical project, and use STM32
	microcontroller as the main control chip to realize the function of the
	practical project; (5 contact hours, 15 self-study hours)
	(4) Physical demonstration, defense and acceptance, and write the
	course design report. (3 contact hours, 5 self-study hours)
Study and examination	1. Basic requirements for class (20%): no late, early withdrawal,
requirements and forms	absence without reason;
of examination	2. Physical demonstration and defense acceptance (30%): physical
	demonstration of the physical objects done in practical training and
	internship, and defense acceptance;
	3. Writing of practice report (50%): internship content and practice
	training experience, summary.
Media employed	Keil and Proteus software, STM32 microcontroller development board,
	multimedia, laser pointer, blackboard, etc.
Reading list	Teaching material:
	[1]Zhang Yang. Atomic teaches you to play STM32 (library function
	version)[M], Beijing University of Aeronautics and Astronautics Press,
	2015 .
	Reference book:
	[1]Xiang Peisu, STM32 Microcontroller Principles and
	Applications[M]. Tsinghua University Press, 2022.
	Other information:
	PPT of comprehensive practical training theory teaching for Electronic
	System Design
<u>.</u>	

Competence field	Centralized practice
Curriculum designation	Embedded System Comprehensive Practical Training Internship
Curriculum code	9061615070
Semester(s) in which	6 th Semester
the curriculum is taught	
Person responsible for	Lecturer Zhang Lincheng
the curriculum	
Lecturer	Lecturer Zhang Lincheng, Professor Li Wenguo, Associate Professor
	Cui Zhi and Assistant Professor Liu Xiongjie
Language	Chinese
The relationship	The course "Embedded System Comprehensive Practical Training
between the curriculum	Internship" is a concentrated practical course for students majoring in
and the major	Electronic Information Engineering, serving as a crucial component for
5	deepening their learning and enhancing their skills. The training covers
	multiple aspects including ARM architecture principles, embedded C
	language programming, hardware interface design, and system
	debugging. Its objective is to enable students to learn the fundamentals
	of embedded systems from both software and hardware application
	perspectives, understand the working principles and cutting-edge
	trends of embedded systems, master their application theories and
	technologies, and independently complete system design based on
	ARM microcontrollers, including hardware circuit construction and
	software programming implementation. Ultimately, through this
	practical training, students will acquire the basic qualities and practical
	abilities required for embedded system development, laying a solid
	foundation for their future career development. This not only involves
	enhancing technical skills but also cultivating comprehensive qualities
	such as teamwork and project management, enabling students to adapt
	to the rapidly changing industry demands.
Type of teaching,	Target students: Electronic Information Engineering major
contact hours	Teaching method: experiment
	Contact hours: 32
	Experimental/practical teaching: 32 hours
	Class size: four classes with about 1 60 students
Workload	Total workload = 90 hours;
	Contact hours = 32 hours;
	Self-study hours = 58 hours;
Credit points	3.0
Requirements according	Only students who have an attendance rate of more than 2/3 and have
to the examination	met the requirements of the project can participate in the defense.
regulations	
Prerequisite curriculum	Computer fundamentals, microcontroller principles and applications,
	microcomputer principles and applications, embedded Linux operating
	system, C language programming.

curriculum objectives	Learning outcomes:
/expected learning	The main task of this course is to enable students to fully grasp the
outcomes	basic principles hardware architecture and software development
	process of ARM embedded systems; through practical operation
	students will skillfully use ARM microcontrollers for project
	development enhancing their programming debugging and system
	optimization capabilities; meanwhile cultivating students practical
	operational problem-solving and teamwork skills ensuring that they
	can flexibly apply their knowledge in real projects accumulating
	valuable experience for future careers in embedded system
	development comprehensively improving personal professional
	qualities and competitiveness. Specific objectives include:
	Knowledge:
	Understand the basis of ARM based embedded systems, ARM
	microprocessor architecture, C/C++ programming language, embedded
	Linux operating system principles, hardware interface technology,
	circuit design and debugging.
	Skill:
	1. Be able to use ARM embedded hardware platform and Ubuntu
	operating system and other software and hardware tools to complete
	the design, development and debugging of embedded application
	products.
	Improve embedded system design and development capabilities,
	including requirements analysis, system design, code writing and
	testing.
	2、Cultivate students skills in systematic debugging and optimization
	as well as teamwork and project management abilities. Through
	practice, students will be able to independently complete the
	development, testing, and maintenance of embedded system projects.
	This will enable students to master embedded technology while
	focusing on application, adopting a product-oriented approach, and
	understanding the interdisciplinary applications of electronic
	technology, computer technology, and software engineering. Students
	will establish an overall mindset and process for product development,
	applying theory to practice, and laying a technical foundation for their future careers.
	Ability:
	1. Be able to understand and master the basic methods of development
	and design of the most popular or newly launched new processors and
	other related chips, software debugging tools, operating systems and
	application software.
	2. Be able to design reasonable experimental steps according to the
	experimental scheme, be able to correctly use the relevant development
	board of ARM hardware platform, complete the design and
	cours of finant intervate platorin, complete the design and

	 development of related applications under Linux operating system platform, be able to debug and analyze the experimental results, and get reasonable and effective conclusions. 3. Have the ability to summarize, organize and express the purpose, principle, content, steps and results of experiments, as well as analysis. Be able to write experimental reports and design documents for embedded systems and applications. 4. Have the ability to analyze and solve problems, as well as team spirit and communication skills. Through the training, students will be able to independently design and implement embedded system projects, comprehensively improve their professional skills and comprehensive quality.
Contents	Practical training (32 contact hours , 58 self-study hours)
	1. Learning embedded development system hardware knowledge (4
	contact hours, 4 self-study hours)
	2. Cross-development environment setup (VMware virtual machine
	installation, SourceInsight installation, VNC and other tools
	installation) (4 contact hours, 6 self-study hours)
	3. Embedded Linux Operating System Practice (basic commands, Vi
	file operation, shell programming, makefile, etc.) (8 contact hours, 16
	self-study hours)
	4. Project development and practice (16 contact hours and 32
	self-study hours)
	(1) Implementation phase of comprehensive embedded system project;
	(4 contact hours, 6 self-study hours)
	(2) Implementation of extended functions and innovative ideas; (2
	contact hours, 4 self-study hours)
	(3) Three to four people will form a team, choose a practical project,
	and use ARM processor as the main control chip to realize the function
	of the practical project; (8 contact hours, 16 self-study hours)
	(4) Physical demonstration, defense and acceptance, and write the
	course design report. (2 contact hours, 6 self-study hours)
Study and examination	1. Attendance rate (10%): Basic requirements for the course (no late
requirements and forms	arrival, no early departure, no absence without reason).
of examination	2. Classroom interaction (10%): answering questions in class, etc
	3. Physical demonstration and defense acceptance (40%): The physical
	objects done in the practice and internship are demonstrated and
	defended;
	4. Writing of practical report (40%): practical content, experience and
Madia ang 1 1	summary of practical training.
Media employed	Multimedia computer, projector, laser pen, blackboard, chalk, Linux
	operating system and Arm development board, ARM embedded
Peoding list	comprehensive experimental box, etc
Reading list	Reference material

[1] ARM Embedded Linux System Development-From Beginner to
Master, edited by Li Yafeng et al. Tsinghua University Press
[2] Embedded Linux System Development Technology-ARM based,
Zhang Jikun / Zhang Xiaoquan, Peoples Post and Telecommunications
Press.

Competence field	Centralized practice
Curriculum designation	Graduation Internship
Curriculum code	9061615060
Semester(s) in which	7 th Semester
the curriculum is taught	
Person responsible for	Professor Li Wenguo
the curriculum	riolessoi Li wenguo
Lecturer	Professor Jiang Dongchu, Professor Li Wenguo, Professor Tan Yue,
Lecturer	Professor Li Jiasheng, Associate Professor He Fei, Associate Professor
	Deng Yaqi, Lecturer Xiong Jie, Assistant Teacher Liu Xiongjie,
Languaga	Assistant Teacher Li Maolin and Assistant Teacher Zhong Peng
Language	Chinese
The relationship	Graduation internship is a comprehensive practical training session for
between the curriculum	students majoring in Electronic Information Engineering after
and the major	completing their specialized courses, serving as a crucial component of
	the curriculum and playing a vital role in achieving the professional
	talent cultivation objectives. Through graduation internships, students
	apply the theoretical knowledge they have learned to analyze the actual
	production technologies observed at the internship site, thereby
	enriching, verifying, consolidating, and deepening their theoretical
	knowledge, appreciating the necessity of textbook knowledge, and
	enhancing their ability to solve practical engineering problems.
Type of teaching,	Target students: Electronic Information Engineering major
contact hours	Teaching method: practical teaching
	Contact hours: 56 hours
	Including:
	Practical teaching: 384 hours
	Class size: Four classes with about 160 students
Workload	Total workload: 540 hours
	Contact hours: 384 hours
	Self-study hours: 156 hours
Credit points	18.0
Requirements according	Complete all practical tasks, complete and submit the graduation
to the examination	internship report manual
regulations	
Prerequisite curriculum	Circuit analysis, analog electronic technology, digital electronic
	technology, signal and system, digital signal processing,
	communication principle, C++ programming, data structure,
	microcontroller principle and application, etc.
curriculum objectives	Learning outcomes:
/expected learning	Knowledge:
outcomes	1. Understand the characteristics of production, management and
	operation of modern electronic information enterprises, be familiar

with relevant market operation methods, and further understand the important role of safety awareness and production safety in product production;

2. Through internship in workshops and teams, they will come into contact with factory managers, technicians and operators, and learn their excellent qualities and related professional knowledge and skills.

3. Get a comprehensive training and cultivation of ability, and independently complete the development and production of a photoelectric system based on microcontroller under the guidance of engineers in a limited internship time, and complete PCB plate making, software and hardware design and system debugging..

1. By developing and manufacturing an electronic system based on a microcontroller and learning the production process, students master the characteristics and requirements of electronic product manufacturing. Through studying C++ and JAVA, each intern independently completes the design of a software system. Through internships, students gain an understanding of the international and domestic development status of electronic products and their manufacturing processes.

2. Learn and understand the debugging, testing and research and development of electronic products, and independently complete the development and production of electronic systems based on microcontroller.

3. Get a preliminary understanding of the general management and production management of modern electronic information enterprises, combine the knowledge learned with the actual production, and master the design and system debugging of information system software and hardware.

Ability:

1. In the process of internship, through the understanding of the actual production process and the conversation with technical personnel, we will cultivate the ambition, sense of mission and pragmatic spirit for the career in the national IT industry, so as to lay a foundation for better adaptation from student to worker;

2. Through observation and analysis of the production process of electronic products, understand the application of professional knowledge in production practice, and deepen the intuitive understanding of electronic product production;

3. Connect theory with practice, use the theoretical knowledge learned to analyze the actual production technology seen in the internship place, so as to enrich, verify, consolidate and deepen the theoretical knowledge, experience the necessity of book knowledge, and improve the ability to solve practical engineering problems;

	4. Understand the operation and management mode of the entermise
	4. Understand the operation and management mode of the enterprise,
	gain working experience and team cooperation ability.
	5. Graduation internship lays a good foundation for students to
	graduate and find jobs.
Contents	Practical teaching (384 contact hours, 156 self-study hours)
	1. Internship preparation (40 contact hours, 26 self-study hours)
	(1) Understand the product development and production situation of
	the internship company through the Internet;
	(2) Learn enterprise safety knowledge, factory discipline and rules
	comprehensively, and clarify the discipline of internship;
	(3) Hold a mobilization meeting for the internship, clarify the
	internship tasks and put forward the requirements for the internship;
	(4) Do other preparatory work before the internship.
	2. Internship content (344 contact hours, 130 self-study hours)
	(1) Invite company leaders and engineering and technical personnel to
	give special technical lectures (factory education, safety education,
	production process teaching, research and development of electronic
	production process teaching, research and development of electronic products, modern factory production organization and management,
	etc.);
	(2) Read the technical operation procedures and related technical data
	of the production workshop carefully, and observe and learn the
	production process directly under the guidance of technical personnel
	arranged by the internship unit;
	(3) Learn and master practical production operation skills under the
	guidance of technical personnel arranged by the internship unit;
	(4) Learn the R&D process of electronic products under the guidance
	of R&D engineers in the internship unit.
	(5) Through the development and production process of an intelligent
	system based on a microcontroller and the study of production
	technology, master the characteristics and production requirements of
	electronic product manufacturing. Understand the international and
	domestic development status of products and production processes
	from companies such as Guangdong Embedded, Software Evaluation
	Center, Auskon, and Keret.
	(6) Learn and understand the debugging, testing and research and
	development of electronic products, and independently complete the
	design, development and production of the system based on
	microcontroller.
	(7) Have a preliminary understanding of the general methods of
	modern enterprise management and production management, combine
	the knowledge learned with the actual production, and effectively
	master the design and system debugging technology of PCB plate,
	software and hardware.
L	software alle hardware.

	(8) Understand the operation and management mode of enterprises
	through the internship company.
Study and examination	The final results include:
requirements and forms	1. Basic requirements (20%): no late arrival, early departure, absence
of examination	without reason;
	2. Mid-term inspection (20%): during the internship period, the
	internship situation will be randomly checked, and the internship
	situation will be exchanged with the on-site and enterprise mentors;
	3. Physical demonstration and defense acceptance (30%): the physical
	objects done in the internship are demonstrated and defended;
	4. Writing of practice report (30%): internship content and practical
	training experience and summary.
Media employed	Multimedia-assisted teaching, practical teaching in enterprise
	workshops
Reading list	[1] National Quality Standards for Undergraduate Teaching of
	Electronic Information in Higher Education Institutions. National
	Standardization Committee. March 2017.

Competence field	Centralized practice
Curriculum designation	Graduation education
Curriculum code	9061815010
Semester(s) in which the	8 th Semester
curriculum is taught	
Person responsible for	Professor Li Wenguo
the curriculum	
Lecturer	Professor Li Wenguo, Professor Jiang Dongchu, Professor Tan Yue,
	Associate Professor Hu Saichun and Assistant Professor Liu Xiongjie
Language	Chinese
The relationship	The Practical Course of "Graduation Education" aims to enable students
between the curriculum	to establish correct values, moral views, and socialist concepts of honor
and the major	and disgrace through activities such as ideals and beliefs education,
	employment situation and policy education, entrepreneurship education,
	integrity education, mental health education, safety law education,
	gratitude education, integrity education, job adaptation education, and
	professional ethics education. It guides students to form the modern
	employment perspective of "employment first, then career selection, and
	finally entrepreneurship," enhancing graduates awareness of "integrity as
	the foundation, integrity in career, and integrity in life." Through
	activities such as mental health education, gratitude education, integrity
	education, safety law education, job adaptation education, and
	professional ethics education, it guides graduates to master effective
	methods of self-psychological regulation, cultivate good psychological
	qualities, promote the deeds of outstanding graduates, foster a strong
	sense of graduation sentiment, enhance their integrity awareness,
	self-discipline awareness, and legal awareness, and strengthen the spirit
	of serving the people, collectivism, and dedication. At the same time, it
	helps students correctly understand the workplace, enabling them to
	confidently enter the professional world and comprehensively improve
	their employment capabilities.
Type of teaching,	Target students: Electronic Information Engineering major
contact hours	Teaching methods: class theme activities, department-wide meetings,
	class meetings, students go to relevant departments to handle school
	departure procedures, graduation defense in each major location,
	graduation ceremony, etc.
	Contact hours: 1 week
	Class size: four classes with about 160 students
Workload	Total workload = 64 hours;
	Contact hours = 32 hours;
	Self-study hours = 28 hours;
Credit points	2.0
Requirements according	Only by attending the graduation education activities organized by the
to the examination	

regulations	having no major violations of school rules and regulations or illegal acts,
D 11 1	can the students pass the examination.
Prerequisite curriculum	Complete all semester courses of this major
curriculum objectives	Learning outcomes:
/expected learning outcomes	Through participating in the activities of this course, students can establish correct values, moral views and modern career views, enhance their awareness of integrity, clean government and legal system, strengthen their spirit of collectivism and dedication, and cultivate their ability of self-psychological adjustment and employment ability.
	The specific objectives include:
	1. Understand the requirements of graduation internship and graduation design in electronic information engineering, and enhance the adaptability to enter the society;
	2. Establish correct values, moral views and socialist views of honor and disgrace, strengthen the education of students professional ethics and norms, and cultivate students legal spirit;
	3. Be able to regulate their own psychology, have good psychological quality, establish the correct learning concept, develop the habit of lifelong learning, and comprehensively improve their employment ability.
content	Practice teaching hours (32 contact hours, 28 self-study hours)
	 Conduct class theme activities to educate students on ideals and beliefs, integrity and gratitude; (8 contact hours, 4 self-study hours) Conduct employment situation and policy, job adaptation and professional ethics education for students through the whole department conference; (4 contact hours, 4 self-study hours)
	3. Conduct safety law and discipline education, integrity education and mental health education through class meetings; (4 contact hours, 4 self-study hours)
	4. Students shall go to the relevant departments to handle the departure procedures; (8 self-study hours)
	5. Graduation thesis defense will be conducted in each major location; (8 contact hours, 8 self-study hours)
	6. Graduation ceremony (university-wide and college-wide). (8 contact
Q. 1 1	hours)
Study and examination	Assessment method and proportion (%):
requirements and forms	1. Practice performance (40%);
of examination	2. Practice effect (40%); 3. Practical materials (20%)
	3. Practical materials (20%). Content of examination:
	 What are your ideas for the later internship and graduation design; Understanding of values, ethics and professional ethics;
	3. Whether to develop a lifelong learning habit.

	Evaluation method scoring criteria:
	Graduation education results are assessed in two levels: qualified and
	unqualified:
	Qualified: attend all graduation activities organized by the school on
	time, submit all required documents as required, and have no major
	violations of school rules and regulations or illegal behavior.
	Unqualified: more than one third of the graduation links organized by the
	school have not participated or have not submitted all the materials due
	to regulations as required, or have committed major violations of school
	discipline and rules, or have committed serious disciplinary violations.
Media employed	Multimedia computer, projector, laser pen, blackboard, chalk.